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ABSTRACT 
In this paper, we present a simple T wave end detection algorithm based on a continuous 
wavelet transform. We used this algorithm to test, which prototype wavelets are optimal 
for the T wave end detection. Several prototype wavelets were tested on four different T 
wave morphologies in a chosen wavelet transform scale range. The result of this study is, 
that efficient prototype wavelets are bior1.1, bior1.3, bior1.5 and gaus1. Another conclu-
sion is, that biorthogonal wavelets are less sensitive to a scale selection, so an algorithm 
based on a biorthogonal wavelet is more robust, than an algorithm based on a Gaussian de-
rivative wavelet. 

1. INTRODUCTION 
The accurate detection of individual electrocardiogram (ECG) significant points is very 
important to a cardiac disease diagnosis. Manually annotate long ECG recordings is very 
time consuming, so methods for an automatic ECG delineation are needed. A lot of mod-
ern approaches are based on a dyadic (DWT), or a continuous wavelet transform (CWT). 

The most problematic part of ECG delineation is an accurate detection of the T wave end 
position. In this paper, we used the T wave end detection algorithm based on a CWT ap-
proach to test, which prototype wavelets are most efficient for the T wave end detection. 

2. MATERIALS AND METHODS 

2.1. USED WAVELET TRANSFORM APPROACH 
The proposed algorithm is based on a CWT approach. The wavelet transform (WT) at dif-
ferent scales describes the time characteristic of a signal in different frequency bands. 
While the DWT is restricted to scales, that are powers of two (used in [1], [2]), the CWT 
can be evaluated in any real positive scale (used in [3]). 

Authors in [1], [2] also used a multi-scale WT approach, based on finding similarities 
across several DWT scales. In this study and also in [3], we used a single-scale CWT ap-
proach. This approach is very fast and simple and provides results comparable with a DWT 
multi-scale approach. 



The CWT of a time-continuous signal x(t) is defined by the integral 
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where ψ(t) is the wavelet function (prototype wavelet), a is the scale parameter and b is the 
translation parameter. 

In [3], we used for the wavelet-based ECG delineation the biorthogonal wavelet bior1.5, 
while the authors in [4] used the derivative of a Gaussian smoothing function gaus1, as the 
prototype wavelet, Figure 1. In this study, we tested several prototype wavelets from Bior-
thogonal, Gaussian, Daubechies and Symlets wavelet families. 
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Figure 1: Prototype wavelets bior1.5 (left) and gaus1 (right). 

2.2. DETECTION OF T WAVE AND T WAVE END 
The T wave has several possible morphologies: positive (+), negative (-), biphasic (+/- and 
-/+), only upwards or only downwards. The proposed algorithm is capable of detect any of 
mentioned morphologies. 

Regarding tested prototype wavelets, zero-crossings of the CWT correspond to the local 
maxima of the signal modulus and the local maxima of the CWT modulus correspond to 
maximum slopes in the signal (Figure 2). 

In the first step, the algorithm searches in a selected scale and area for the pair of modulus 
maxima exceeding the threshold ξT. The T wave is found as a zero-crossing between the 
pair maximum-minimum, or minimum-maximum (Figure 2). In the next step, the delinea-
tor is testing, whether the modulus maximum between two adjacent zero-crossings is larger 
than the threshold ξT. If it is larger, than the algorithm is testing the modulus maximum be-
tween another two adjacent zero-crossings. Once the modulus maximum is smaller than 
the threshold ξT, the T wave end is found between the previously tested pair of zero-
crossings. The T wave end is determined as the last sample larger (in absolute value) than 
the threshold ξT (Figure 2). The threshold ξT is defined by the equation  

 ])[,(66.0 nxWRMS kT =ξ , (2) 

where RMS stands for Root Mean Square, Wk is the k-th scale of the CWT and x[n] is the 
selected T wave area. 
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Figure 2: T wave end detection approach (positive, negative and biphasic T wave). 

3. RESULTS 
We tested the designed T wave end detector on four different T wave morphologies: posi-
tive (+), negative(-) and two biphasic (+/- and -/+). The detector was tested in a scale range 
between scales 16 (24) and 64 (26), with the step 2 (25 tested scales) for several different 
prototype wavelets. The difference between referential and detected T wave end position 
was calculated for each combination of a scale, T wave and prototype wavelet. These dif-
ferences are shown in Figure 3. 

T wave/wavelet bior1.1 bior1.3 bior1.5 gaus1 
positive (+) -27.3 ms -31.5 ms -32.0 ms -15.0 ms 
negative (-) -15.5 ms -19.4 ms -20.1 ms -7.0 ms 

biphasic (+/-) 16.0 ms 9.8 ms 8.0 ms 29.8 ms 
biphasic (-/+) -5.9 ms -6.8 ms -6.9 ms 7.0 ms 

global pos. diff. -5.9 ms -6.8 ms -6.9 ms 7.0 ms 

Table 1: Mean differences between referential global position and positions detected 
by the algorithm, calculated from 25 values (one for each scale). Last row values are dif-
ferences between global referential position and global positions detected by the algorithm.
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Figure 3: Differences between referential and detected T wave end positions. 

We calculated mean differences for each combination of a prototype wavelet and T wave, 
from differences across the scale range, Table 1. Global position differences in a last row 
of Table 1 were obtain from Table 1 values by selecting the third highest value in each 
column. Global position is a common position for all four tested T wave morphologies. 

We also calculated standard deviations for each combination of a prototype wavelet and T 
wave, from differences across the scale range, Table 2. Mean standard deviations in a last 
row of Table 2 were calculated as a mean of each column values. 

T wave/wavelet bior1.1 bior1.3 bior1.5 gaus1 
positive (+) 6.7 ms 6.8 ms 6.9 ms 10.6 ms 
negative (-) 3.2 ms 3.2 ms 3.4 ms 7.2 ms 

biphasic (+/-) 7.7 ms 7.0 ms 7.1 ms 11.7 ms 
biphasic (-/+) 4.7 ms 7.7 ms 8.5 ms 14.1 ms 

mean stan. dev. 5.6 ms 6.2 ms 6.5 ms 10.9 ms 

Table 2: Standard deviations of differences between the referential global position 
and positions detected by the algorithm, calculated from 25 values (one for each scale).
Last row values are mean standard deviations calculated as a mean of each column values.



4. DISCUSSION 
Global positions difference values (Table 1), calculated for each tested prototype wavelet, 
are between 5 and 7 ms (in absolute value) for prototype wavelets bior1.1, bior1.3, bior1.5 
and gaus1. These values are comparable and algorithms based on these prototype wavelets 
are very accurate in the T wave end detection. 

The mean standard deviation value calculated for the prototype wavelet gaus1 is almost 
twice higher, than mean standard deviation values calculated for biorthogonal wavelets. 
The conclusion is, that biorthogonal wavelets are less sensitive to a scale selection, than the 
wavelet gaus1. The difference between the referential position and a position detected by 
the algorithm will change much more in the case of the wavelet gaus1, than biorthogonal 
wavelets, if we change the used scale (shown in Figure 3). 

5. CONCLUSION 
In this paper, we used several prototype wavelets to test, which prototype wavelet is op-
timal for the T wave end detection in ECG signals. Among of all tested prototype wavelets, 
only four wavelets are applicable, wavelets bior1.1, bior1.3, bior1.5 and gaus1. All other 
tested prototype wavelets had a much higher mean standard deviation value, than men-
tioned four wavelets. We also proved in this study, that wavelets from biorthogonal wave-
let family are less sensitive to the scale selection, than Gaussian derivative wavelet gaus1. 
The conclusion is, that the algorithm based on a biorthogonal wavelet is more robust, than 
the algorithm based on a Gaussian derivative wavelet. 
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